Inhibition of Premixed Methane-Air Flames by Water Mist

S. Paul Fuss¹, Ezra F. Chen, Bradley A. Williams and James W. Fleming Navy Technology Center for Safety and Survivability Naval Research Laboratory Washington, DC

and

Wenhua Yang and Robert J. Kee

Engineering Division Colorado School of Mines Golden, CO 80401, USA

¹ASEE-NRL Postdoctoral Fellow, Jan 1999 - Jan 2000. Current address: Bureau of Alcohol, Tobacco, and Firearms, Fire Research Laboratory, Rockville, MD 20850, USA

Introduction

- Halon 1301 (CF₃Br) was widely used agent in total flooding fire suppression systems
- Production ban in 1994 created need for replacement agents
- Water is a promising alternative to halon for many applications; favorable properties include:
 - zero ozone depletion
 - zero global warming potential
 - non-toxic
 - inexpensive agent
 - effective at fire suppression

Practical Considerations

- Liquid at room temp; must work with drops
 - Drop generation; suitable quantities at optimum size
 - Drop quantification and monitoring
 - Physics of multi-phase flow; engineering issues
 - Flow dynamics: need to get water to fire
- Drop size matters
 - Small drops (d <100 μm) most effective
- How effective can water be under ideal laboratory conditions?

Water is a Thermal Agent

Inert thermal agents:

Increase heat capacity
Lower flame temperature
Reduce progress of flame
Dilute oxygen

=>Results in reduced burning velocity of premixed flames

Water is a good thermal agent

• Large latent heat of vaporization of **liquid water** provides significant contribution to suppression effectiveness

Thermal Agent Effect on Burning Velocity

Both modeling and experimental studies show that there is a linear reduction in burning velocity with addition of gaseous thermal agents

PREMIX calculations of flame speed - Comparison of N₂, CF₄, and water vapor

Thermodynamic Properties

	$H_{\rm f}^{2200}$ - $H_{\rm f}^{298}$		
Agent	kJ g	$\frac{kJ}{mol}$	
N_2	2.3	63	
CF ₄	2.1	184	
H ₂ O (vapor)	4.6	83	
H ₂ O (liquid)	7.1	127	
CF ₃ Br	1.3	189	

Reduction in flame temperature determined by sensible enthalpy:

$$H_f^{(Flame\ T)}$$
 - $H_f^{(Room\ T)}$

- On mass basis N₂ and CF₄ have similar heat capacities
- Liquid water has three times the sensible enthalpy per unit mass as N₂ or CF₄
- 1/3 of sensible enthalpy of liquid water comes from vaporization

Burning Velocity of Premixed Flames

- Reduction of burning velocity is the best measure of inhibition in a premixed flame
- Burning velocity is determined by total area method using flame surface area:

```
Burning Velocity = (Mean bulk velocity)(burner diameter)
flame surface area
```

- Flame surface area can be derived from schlieren, shadow image, or luminous flame image
- Luminous flame image used in study
- Burning velocities are normalized to that of the uninhibited flame removing uncertainties associated with absolute velocity determination

29th Combustion Symposium

Water Mist-Inhibited Burning Velocity Measurements in Premixed Flames

Submicron Water Mist Reduction of Premixed Methane-Air Flame Burning Velocity

As effective as CF₃Br, Halon 1301

¹Sanogo, 1993, Ph.D. Dissertation, Universite d'Orleans, France.

²Parks et al., 1979, *Fire Safety J.*, **2**: 237-247.

³Noto et al., 1998, *Comb. Flame*, **112**: 147-160.

Methane-Air Flame Burning Velocity Reduction by Selected Agents

Agent	$\frac{H_f^{1600}}{\frac{kJ}{g}}$	$-H_{\rm f}^{300}$ $\frac{\rm kJ}{\rm mol}$	Percent Mass Fraction (20% Reduction)		$(H_{\rm f}^{1600}\text{-}H_{\rm f}^{298})*(X_{\rm agent}/X_{\rm O2})$ (kJ/mol)
N_2	1.5	42	6.3 ± 0.1	6.2 ± 0.1	14.6 ± 0.3
CF ₄	1.4	122	5.5 ± 0.1	1.9 ± 0.1	12.1 ± 0.7
H ₂ O (mist)	5.2	93	1.8 ± 0.2	2.7 ± 0.2	13.5 ± 1.0
CF ₃ Br ¹	0.8	1.9	1.9	0.4	2.5

¹ Noto et al., 1998, Comb. Flame, **112**: 147-160.

Comparison of Water and Halon 1301

- Chemical suppression effects dominate in CF₃Br
 CF₃Br more efficient than N₂ or CF₄ and comparable to water mist even though CF₃Br has a lower sensible enthalpy per unit mass
- Effectiveness of water requires total vaporization

Maximum Effectiveness Achieved Because of Complete Evaporation

Sub-micrometer diameter drops completely evaporate before leaving flame

Flame only

Laser sheet illumination of drops, no flame

Flame and laser sheet illumination of drops

Two-Phase Modeling Approach

- Eulerian formulation of gas-phase flame coupled with Lagrangian formulation of the drops
- Extension of PREMIX addition of drop evaporation related source terms
- Boundary-value problem solving governing equations for gas phase
 - Chemical reaction mechanism, thermodynamic and transport properties from GRI-Mech 3.0 (nitrogen chemistry removed)
- Burner-stabilized flame with options for finding flame speed

Effectiveness plateau below $\sim 10 \, \mu m$ Non monotonic suppression behavior with loading for large drops

Yang and Kee *Combust. Flame* (2002) accepted.

Water Aerosol Inhibition of Premixed Methane/Air Flames

Experimental results (symbols) in excellent **agreement** with modeling predictions for sub-micron **water drops** and **water vapor**

Conclusions

- Water mist is as effective as Halon 1301 (CF₃Br) on mass basis in inhibiting premixed methane-air flames for small drops: maximum suppression achieved
- Suppression effectiveness consistent with thermodynamic analysis based on complete evaporation of the small water drops (~0.35 μm diameter)
- Measured suppression effectiveness of small drops and water vapor in excellent agreement with multi-phase model, requiring no adjustable parameters
- Model predicts a plateau in suppression effectiveness at small drop size and a non-monotonic suppression effectiveness with increased loading for larger drops

Acknowledgements

Funding:

- ONR/NRL Core 6.1 Funding; US Department of Defense's Next Generation Fire Suppression Technology Program supported by the DoD Strategic Environmental Research and Development Program (SERDP)
- NASA through the Center for the Commercial Applications of combustion in space (CCACS) at the Colorado School of Mines

Data Collection Automation:

• Mr. Derek Dye, U Maryland - Baltimore County, Computer Science (NRL Student Intern May 1997-May 2000)

How good should water be?

To a good approximation, inert agents cause equal reductions in burning velocity for equal reductions in adiabatic flame temperature.

But, the mass of agent required varies:

Water vapor twice as effective as nitrogen or CF₄

Liquid water: enthalpy of vaporization 50% as large as enthalpy of heating to 2200K.

So liquid water should be 3 times better than nitrogen.